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Abstract— Classical oscillators, such as the ideal

pendulum and the harmonic oscillator, can be modeled

as switching systems. In these models, the switching

takes place in a “graceful” fashion when the rate of

displacement is zero. Such examples raise the question

of whether hybrid models with such “graceful” switching

can be modeled using ordinary differential equations, and

of how to identify cases of hybrid systems which admit

alternative classical descriptions in higher dimensions.

Conversely, in a similar spirit, we discuss how a relax-

ation oscillator which consists of an integrator in feed-

back with an ideal relay-hysteresis can be approximated

by a second order system.

Consider the ideal pendulum depicted in Figure

1. This consists of a mass m suspended by a mass-

less rod of length ℓ in a field with gravitational

acceleration g. Applying Newton’s laws this can

be modeled by

θ̈ = −g

ℓ
sin(θ), (1)

as a second-order system. Alternatitvely, if θmax

m

θ

ℓ

Fig. 1. Ideal pendulum.

represents the maximal angle with the vertical,

then at any θ with |θ| ≤ θmax, it holds that
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2
m(ℓθ̇)2 = mgℓ(cos θ − cos θmax), and in a stan-

dard way we obtain the first integral of motion:

θ̇2 = 2
g

ℓ
(cos θ − cos θmax). (2)

Differentiating (2) leads to (1). But (2) already

describes the motion in the form of the first-order

differential equation

θ̇ = ±
√

2
g

ℓ
(cos θ − cos θmax). (3)

Starting from (3) the solution can be expressed

in terms of classical Jacobi elliptic functions (see

[3, Chapter 17], [6]), but this approach will not

concern us herein.

We wish to interpret (3) as defining the hybrid

(switching) system:

θ̇ = u

√

2
g

ℓ
(cos θ − cos θmax), (4)

where:

a) the state (θ, u) ∈ R × {+1,−1},

b) u(t) remains constant as long as |θ(t)| 6=
θmax,

c) when |θ(t1)| = θmax, then u(t1) → −u(t1),

and

d) on any interval [t1, t1 + ǫ), for small ǫ > 0,

select the unique solution θ(t) of (4) which is

not constant.

The above rules specify uniquely the dynami-

cal evolution of a hybrid (switching) system, where

switching occurs in a “graceful” manner, when

the rate θ̇ is zero. The reason for rule d) stems

from the fact that (4) is not Lipschitz-continuous

when |θ(t1)| = θmax, and admits many solutions.

All solutions but one are constant on intervals

[t1, t1 + ǫ) for sufficiently small ǫ > 0.
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A similar description is valid for the linear

harmonic oscillator

ẍ = −x, (5)

which admits a first integral of motion ẋ2 = 1−x2

and hence, a description as a switching system

ẋ = u
√

1 − x2, (6)

with u ∈ {+1,−1} and a similar set of rules for

switching as above. Switching for this system as

well takes place in a graceful manner, when ẋ = 0.

This type of transition occurs when the trajectory

of the system passes onto different branches of a

Riemann surface. Naturally, by differentiating (6)

we can eliminate u and recover (5).

The above examples raise the question as to

how to identify cases of hybrid systems which

admit alternative classical descriptions in higher

dimensions. It appears that cases where switching

occurs only when the rate of change of the state

vector is zero, fall in this category. Conversely,

these examples raise the possibility that a switch-

ing system may be approximated by one with this

type of a property (i.e., “graceful” switching) and

then converted to a smooth ordinary differential

equation. We now amplify this idea by referring

to the ordinary play (i.e., the ideal relay hysteresis

element) when in feedback with negative integra-

tor.

u

u

x

x

-
∫

H

P

Fig. 2. Relay-relaxation oscillator

A relay-hysteresis H(·) is defined for a contin-

uous input x(t) (see e.g., [5, p. 66]). For simplicity

we may assume that u(0) = 1, x(0) = 0 and that

|x| ≤ 1. Then, the output u(t) takes values from

the set {−1, +1} according to the following set of

rules:

i) u(t) → −u(t) when |x(t)| = 1 and

x(t)u(t) < 0,

ii) u(t) stays constant otherwise.

The analysis of switching systems with relays

requires care due to the discontinuous nature of

the outputs of such elements. The well-posedness

of feedback systems with such discontinuous ele-

ments has been the subject of several investiga-

tions [2], [7], [8]. A typical simplification calls

for avoiding arbitrarily fast switching, in which

case existence and uniqueness of solutions can

be ensured by integrating dynamic elements over

successive intervals where the output of the relay

is constant.

An alternative approach can be based on repli-

cating the earlier idea and approximating the dis-

continuous relay with the “gentler” nonlinear ele-

ment f(x) = ± 2k

√

1 − x2k

mod2
over the whole axis,

for k ∈ N, a suitable choice of sign, and xmod2

Fig. 3. Continuous approximation of relay hysteresis.

chosen to take values in [−1, 1] —this is shown

in Figure 3. In this way the feedback system of

Figure 2 is approximated by

ẋ = u
2k

√

1 − x2k, (7)

In particular, u switches between +1 and −1 as

before, but only when the output of the nonlin-

ear element f(x) is zero. Then we eliminate the

switch altogether by differentiating (7) to obtain
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the second-order ordinary differential equation

ẍ = u

(

∂

∂x

2k

√

1 − x2k

)

ẋ

= −x
1

(

1

xk − xk
)

k−1

k

. (8)

The response of (8) is shown in Figure 4 for
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Fig. 4. Response of (8) for k = 2.

k = 2. This is the exact response of the feedback

system in Figure 2 when replacing the ideal relay

hysteresis with the nonlinearity shown in Figure 3.

Thus, switching has been replaced by an ordinary

differential equation, albeit a rather stiff one. As

expected, this gives a fairly good approximation

of the response of the system in Figure 2 with the

ideal relay hysteresis in place.

To recap, when in hybrid systems switching

takes place in a graceful manner, it may be ben-

eficial to model and analyze such systems by

using ordinary differential equations instead. This

suggests a possible route for approximating more

general switching systems.
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