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Global stocks and capacity of mineral-associated
soil organic carbon
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Anders Ahlström 9, Wenting Feng 10, Jennifer W. Harden2,11, Adam F. A. Pellegrini 12,13,

H. Wayne Polley 14, Jennifer L. Soong15,16, William J. Riley 17 & Margaret S. Torn 17,18

Soil is the largest terrestrial reservoir of organic carbon and is central for climate change

mitigation and carbon-climate feedbacks. Chemical and physical associations of soil carbon

with minerals play a critical role in carbon storage, but the amount and global capacity for

storage in this form remain unquantified. Here, we produce spatially-resolved global esti-

mates of mineral-associated organic carbon stocks and carbon-storage capacity by analyzing

1144 globally-distributed soil profiles. We show that current stocks total 899 Pg C to a depth

of 1 m in non-permafrost mineral soils. Although this constitutes 66% and 70% of soil carbon

in surface and deeper layers, respectively, it is only 42% and 21% of the mineralogical

capacity. Regions under agricultural management and deeper soil layers show the largest

undersaturation of mineral-associated carbon. Critically, the degree of undersaturation

indicates sequestration efficiency over years to decades. We show that, across 103 carbon-

accrual measurements spanning management interventions globally, soils furthest from their

mineralogical capacity are more effective at accruing carbon; sequestration rates average

3-times higher in soils at one tenth of their capacity compared to soils at one half of their

capacity. Our findings provide insights into the world’s soils, their capacity to store carbon,

and priority regions and actions for soil carbon management.
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Soil organic carbon (SOC) is an integral component of ter-
restrial ecosystems and plays an important role in ecosys-
tem resilience and productivity. Soil organic matter contains

nutrients that support plant growth and yield, retains water and
reduces runoff, and resists erosion1. Globally, SOC contains more
carbon than the atmosphere and vegetation combined2–4. Cli-
mate- and land-use-induced changes to soil may alter SOC
cycling and drive large terrestrial carbon sinks or sources; indeed,
human land-use and land-cover change have resulted in a sig-
nificant net loss of soil carbon over the past two centuries5–7.
Improved soil management practices that promote soil carbon
sequestration, especially in stable carbon pools, are needed to
reverse this trajectory and mitigate climate change8,9.

Field observations suggest that more than half of soil organic
carbon is chemically or physically associated with soil
minerals10,11 (Supplementary Fig. 1). These interactions limit
microbial access to otherwise decomposable substrates12,13 and,
consequently, mineral-associated organic carbon (MOC) can
have turnover times up to 1000 times longer (reaching
100–10,000 years) than particulate organic carbon (POC) at the
same depth14,15. Thus, increasing MOC may be a key to lasting
carbon sequestration in soils16. However, despite its unique role,
it is still unclear how much MOC presently exists, and how much
could be accrued, in soils globally across depths and geographic
regions. The capacity of soils to store MOC and other persistent
forms of SOC will influence the long-term trajectory of the ter-
restrial carbon sink. Furthermore, it is unknown whether the
proximity of a given soil to its carbon-storage capacity will
influence the rate of C accrual, and thus the efficacy of soil C
sequestration efforts. These knowledge gaps hinder climate
change mitigation pathways and soil management initiatives, and
limit long-term projections of Earth system models.

Soil organic matter decomposition, and its response and
feedback to climate, depends on the physico-chemical form of the
organic matter. To improve projections of long-term soil-climate
feedbacks, it is imperative to predict the amount, distribution, and
dynamics of MOC17. Yet, little attention has been afforded to the
explicit representation and parameterization of mineral-organic
associations in Earth system models18. Organic matter and
minerals form associations via myriad mechanisms, including
ligand exchange, hydrophobic interactions, and cation bridging19,
and the appropriate—representative yet tractable—mathematical
formulation of MOC dynamics in these models is still the subject
of research20,21. Nevertheless, existing and candidate approaches
require a means to constrain the maximum mineralogical capa-
city (MOCmax). This MOCmax is a property of the soil
mineralogy22,23. A data-driven approach to convert readily
measured soil mineralogical variables to MOCmax is therefore
needed to achieve advances in modeling and to enable robust
estimates of carbon sequestration capacity.

Here we synthesized MOC observations from 1144 soil profiles
spanning diverse biomes, soil types, and climates worldwide. Our
synthesis included soils with a wide range of clay plus silt mineral
content (CS; 1.5–100%), mean annual temperature (MAT;
−2.9–29 °C), and mean annual precipitation (MAP;
79–3806 mm yr−1), as well as different vegetation types and land-
uses (Supplementary Figs. 2 and 3). We leveraged these obser-
vations, with insights from theory and process-based models, and
demonstrated that MOCmax can be inferred as an emergent
property from readily measured soil mineralogical variables. We
explored the variability of observed MOC and used a machine
learning approach to elucidate the role of environmental vari-
ables, including climate and vegetation, in driving the observed
departures from mineralogical saturation. We categorized sites
into natural/less-managed (forest and grassland) and intensively
managed (cropland) ecosystems to further investigate the effects

of vegetation type and management on the degree of MOC
undersaturation across soil depths. Finally, to explore how this
undersaturation affects the sequestration efficacy of soils over
decadal timescales, we examined 103 carbon-accrual measure-
ments spanning management interventions globally.

Results and discussion
Carbon capacity of low- and high-activity mineral soils. Studies
have presented conflicting results on the importance of clay plus
silt content (CS) as a single linear predictor of MOC24–26, with
many of these analyses focusing on the prediction of bulk SOC,
which contains additional pools of non-mineral-associated
organic carbon (e.g., POC). As we present here, theory and
model insights, as well as our extensive global data analysis, all
suggest that there is no universal linear relationship between
MOC (or SOC) and CS (Supplementary Figs. 4–6). Rather, this
relationship depends, to a first-degree, on the combined effect of
the C loading on minerals (g Cm−2 mineral) which is a function
of environmental conditions and management practices27, and
the effective mineral area on which C can bind (m2 g−1 mineral)
which is a function of the type of mineral22,28,29. However, since
MOCmax is driven primarily by the amount (g mineral kg−1 soil)
and type of mineral23,28, we hypothesized that if soils were par-
titioned based on their dominant mineral type, CS would emerge
as a significant predictor of MOCmax globally.

To test this hypothesis, we classified soils according to their
mineral type and explored whether the upper quantiles of
observed MOC form distinct boundaries for different mineral
categories, i.e., whether a distinct MOCmax specific to each
mineral type arises (Supplementary Figs. 6 and 7). Here, we
classified soils as containing high- or low-activity minerals (HM
or LM, respectively) based on their primary composition of high-
activity (illite, smectite, vermiculite, chlorite) and low-activity
(kaolinite, gibbsite) clays29–31 (see “Methods” for the robustness
of results to additional categories).

Indeed, our data synthesis quantifies and supports this
hypothesis, demonstrating that a robust MOCmax estimate can
emerge as a function of only CS and the type of mineral (Fig. 1;
and irrespective of vegetation type, Supplementary Fig. 8). We
obtained a conservative estimate of MOCmax as the 95th quantile
of MOC values for each mineral type, resulting in MOCmax

estimates of 86 ± 9 and 48 ± 6 mg C g−1 mineral for HM and LM,
respectively (Fig. 1; slope ± 90% confidence interval, following a
unit conversion). These data-derived estimates of MOCmax

provide a maximum carbon potential for a given CS and mineral
type, which can be used to inform the location and management
practices of soil restoration and sequestration efforts (Supple-
mentary Discussion). These values broadly agree with regional
studies that have included high-activity minerals at comparable
soil depths28,32,33, but are significantly greater than studies that
have omitted mineral activity24,34–37. Given the important role of
mineralogy (Supplementary Fig. 4), our data-driven MOCmax

estimates are also a notable update to regional studies that have
reported a maximum carbon potential across European soils (e.g.,
45–50 g C kg−1 soil based on model-predicted values in ref. 11).
While it may be difficult for soils to reach MOCmax in practice,
the proximity of a given soil to its maximum capacity is an
important factor for determining its effectiveness in sequestering
additional carbon (see Supplementary Fig. 9 for a conceptual
schematic)38,39 and, consequently, underestimating MOCmax can
have significant implications for estimates of carbon deficit and
potential accrual.

Vegetation and management controls on carbon under-
saturation across depths. Our analysis suggests that many soils
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are substantially below their mineralogical capacity (Fig. 1). This
mineralogical undersaturation may be attributed to environ-
mental (e.g., climate and plant C inputs) limitations on MOC
storage and decomposition, management practices that result in
MOC losses, or both. To explore where and why soils contain less
MOC than they could based on their mineralogy alone, we cal-
culated the mineralogical % C saturation for a given soil as the
ratio of observed MOC to MOCmax (see “Methods”; Supple-
mentary Fig. 10). Across all sites, soils averaged 40 ± 2% C
saturation (±95% confidence interval of the mean). Land-use
change and/or poor management practices that degrade soils can
decrease MOC, a result evident in the shift of C saturation dis-
tributions from less-managed to more intensively managed eco-
systems (Fig. 2a). The former (namely, grasslands and forests),
which we refer to here as natural ecosystems for brevity, had on
average higher levels of C saturation than did agricultural systems
(p < 0.0001; Fig. 2a). Indeed, whereas soils in natural ecosystems
averaged 46 ± 3% C saturation, agricultural systems averaged only

31 ± 2% C saturation. This contrast suggests that restoring
degraded or intensively managed lands could push their soils
towards higher C saturation levels (i.e., their highest attainable
MOC given the site-specific environmental factors that limit
stocks below MOCmax) and allow them to serve as a substantial C
sink.

We also observed that deeper soils were further from C
saturation than were surface soils (p < 0.0001; Fig. 2b). On
average, surface soils (0–30 cm) were 43 ± 2% C saturated, as
compared to 19 ± 3% C saturation for deeper soils (30–120 cm).
This difference is likely due, in part, to lower rates of C inputs
with depth40,41. The location and type of C inputs are also
important, as a higher proportion of plant C is retained in SOC
from belowground root inputs than from aboveground litter
inputs42–44. We may then expect a difference in C saturation
levels between grasslands and forests, which have different root
depth distributions45. Indeed, although there was no significant
difference in the level of saturation between grasslands and forests
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Fig. 2 Percent mineralogical carbon saturation across ecosystems and soil depths. Percent mineralogical C saturation (%C saturation)—i.e., the
proximity of a soil to its mineralogical carbon capacity (MOCmax)—was calculated for each measurement in our observational synthesis. a %C saturation
grouped by managed (n= 573) and natural (n= 862) ecosystems across depths (see “Methods”). b %C saturation by ecosystem (cropland, forest, and
grassland) and depth (surface < 30 cm and deep > 30 cm). Only categories with >5 observations for both surface (cropland n= 425; forest n= 242;
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3rd quartiles (boxes), 1.5× interquartile range (whiskers), and means (diamonds).
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observational synthesis. a Mineral-associated organic carbon (MOC; g C kg−1 soil) as a function of clay and silt content (CS; %) across sites. The
maximum slope (fit as the 95th quantile) for each soil type represents the intrinsic capacity of minerals to store carbon and depends on mineral
composition. High-activity minerals (HM) include soils dominated by illite, smectite, vermiculite, and chlorite (n= 1303) and low-activity minerals (LM)
include soils dominated by kaolinite and gibbsite (n= 93). Shading depicts 90% confidence intervals on the slope. Soils near the upper quantiles are closer
to MOC saturation. Within HM and LM soils, filled markers and crosses denote natural and managed ecosystems, respectively. b, c Distribution of soil
texture (b) and climate (c) across sites. Black polygons depict Whittaker’s biomes119 according to mean annual temperature (MAT; °C) and mean annual
precipitation (MAP; mm yr−1) values, following: (1) tropical rainforest; (2) tropical seasonal rainforest/savanna; (3) subtropical desert; (4) temperate
rainforest; (5) temperate seasonal forest; (6) woodland/shrubland; (7) temperate grassland/desert; (8) boreal forest; and (9) tundra.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31540-9 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3797 | https://doi.org/10.1038/s41467-022-31540-9 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


in surface soils (0–30 cm), grasslands were closer to C saturation
in deeper horizons (30–120 cm) than forests were (p < 0.005;
Fig. 2b). This pattern confirms that root profiles and rates of C
inputs influence the achieved MOC levels. This is an additional
reason to expect that deeper-rooted vegetation may be more
effective in sequestering C, and should thus be examined for
restoring degraded lands and selecting cover crops41,46.

Climate controls on mineral-associated organic carbon. Cli-
mate also affects the achieved MOC in soil and its departure from
saturation. However, MOC does not vary linearly with extrinsic
factors such as temperature, but rather its response is governed by
‘pedogenic thresholds’ and nonlinearities47. We thus used a
machine learning approach to determine the significance of key
covariates and reveal emergent relationships of each variable, as
well as variable interactions, on MOC (i.e., partial dependence
plots; see “Methods”). This approach illuminates not only the
overall sensitivity of MOC to individual variables but also the
conditional relationship and rate of change with respect to a given
variable (i.e., the partial derivative), without imposing a particular
(e.g., linear) relationship. Specifically, we optimized a random
forest (RF) model using key environmental covariates (see
“Methods”; R2= 0.60, Supplementary Fig. 11). We then calcu-
lated partial dependence relationships of MOC as a function of
each variable alone (Supplementary Fig. 12), as well as condi-
tional on interactions between variables (Fig. 3).

Clear predictive relationships emerged for MOC as a function
of each variable. We found a linear partial dependence relation-
ship between MOC and CS (Supplementary Fig. 12a), which can
be attributed to an underlying increase in total mineral surface
area and pore space22,48. This result supports studies that find
correlations between MOC and CS, but illustrates the importance
of controlling for the variability introduced by environmental
covariates. With POC, we observed a saturating relationship in
MOC (Fig. 3a), corresponding to an increase in C loading up to
an effective saturation of mineral surfaces48,49. Although not all of
this POC may be able to sorb onto mineral surfaces, it emerged as
a significant variable in our analysis (Supplementary Figs. 11 and
12), likely as an indicator of rapidly decomposing material and
the production of microbial necromass and dissolved organic
carbon. In contrast, machine learning predictions of the
conditional relationship between MOC and aboveground litter
inputs showed a weaker dependence, consistent with other

findings that aboveground productivity and litterfall are often not
good proxies for carbon inputs to mineral soils42.

We observed a decline in MOC with MAT (Fig. 3b and
Supplementary Fig. 12c) which is consistent with increased
relative desorption with increasing temperatures50,51, and sug-
gests a potential global vulnerability of MOC to warming. This
decline with MAT also emerged across different ranges of POC,
but interestingly, with significant differences in magnitude
(Fig. 3b); low POC regimes (which are furthest from MOC
saturation; Fig. 3a) exhibited greater temperature sensitivities
compared to high POC regimes (soils closer to saturation;
Fig. 3a). Distinct temperature-dependence regimes of saturating
sorption curves are corroborated by theory (Supplementary
Fig. 6) and experiments52. Specifically, when available carbon
concentrations are low, MOC depends on the equilibrium
constant Keq ¼ f ðTÞ (i.e., the ratio of adsorption to desorption
rate constants; Supplementary Fig. 6) which is a strong function
of temperature, whereas when concentrations are high, MOC
approaches MOCmax ≠ f ðTÞ and hence exhibits a weaker
temperature dependence. Thus, our findings suggest that
restoring degraded soils towards their mineralogical capacity
through improved land management may not only contribute to
carbon sequestration efforts53 but also impart a greater resiliency
of soils to future warming.

Finally, we leveraged a machine learning approach to predict
current MOC globally, excluding tundra, peatlands, and deserts (see
“Methods”; R2= 0.79, Supplementary Figs. 13 and 14). We
estimated that MOC stocks total 899 Pg C (5–95% range: 668,
1074 Pg C) to a depth of 1m, with 448 Pg C (296, 536) in topsoils
(0–30 cm) and 451 Pg C (372, 538) in subsoils (30–100 cm) (Fig. 4
and Supplementary Fig. 15; Supplementary Tables 1 and 2).
Globally, MOC made up a smaller proportion of total SOC in
topsoils (0.66 ± 0.13; mean ± s.d.) compared to in subsoils
(0.70 ± 0.17) (0.69 ± 0.15 to a depth of 1m; Supplementary Fig. 16).
Soils had a smaller proportion of MOC to SOC in boreal regions
than in tropical and temperate regions, suggesting a larger
proportion of non-protected carbon (i.e., POC) at high latitudes
that may be vulnerable to warming54 (Supplementary Discussion).
Our global estimates of MOC stocks, and as a fraction of total SOC,
are to our knowledge the first such spatially- and depth-resolved
data products, providing a crucial link for understanding soil carbon
vulnerability, benchmarking soil carbon models17, and assessing the
mineralogical potential for carbon sequestration globally.
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Global soil mineralogical carbon capacity. We used the same
classification of mineral types from our observational synthesis to
map high- and low-activity minerals (HM and LM, respectively;
see “Methods”, Supplementary Fig. 14). Together with a global
map of CS and our derived relationships for MOCmax in HM and
LM soils, we calculated the corresponding MOCmax globally
(Fig. 4 and Supplementary Fig. 17). This spatially explicit and
depth-resolved global product provides insights into the capacity
of the world’s soils to store MOC. Globally, we estimate that the
soil mineralogical C capacity is 1443 ± 141 Pg C and 3153 ± 312
Pg C in topsoils and subsoils, respectively, totaling 4596 Pg
C ± 453 Pg C to a depth of 1 m (excluding tundra, peatlands, and
deserts; Supplementary Table 1). Many sites in temperate and
subequatorial zones show the greatest mineralogical C deficit
(MOCmax minus MOC), and thus potential for additional MOC
storage, in part because of the prevalence of agricultural soils
there (Fig. 4c and Supplementary Figs. 18–20). Indeed, we esti-
mate that the mineralogical C deficit of croplands is 184 Pg C
(5–95% range: 148, 225) and 509 Pg C (439, 569) in topsoils and
subsoils, respectively (Supplementary Table 1). While reaching
MOCmax is difficult and strongly limited by climate (Fig. 3), if
these soils achieved the average %C saturation levels of natural
lands (Fig. 2), this potential sequestration would total nearly 104
Pg C to a depth of 1 m (62 and 42 Pg C in topsoils and subsoils,
respectively) (Supplementary Table 1). Grazing lands also show a
large mineralogical C deficit covering a large expanse globally, but

will require tailored strategies for soil C restoration, especially in
arid and semi-arid regions that are additionally limited by climate
(e.g., the Southwestern United States and Ustyurt Plateau). Our
maps reveal hotspots of mineralogical C deficit, often associated
with long-standing cropping and grazing lands (Fig. 4 and Sup-
plementary Figs. 20 and 21), and highlight priority regions for soil
C restoration efforts.

Current MOC stocks correspond to global average C saturation
levels of 42% (5–95% range: 24%, 61%) and 21% (14%, 30%) in
topsoils and subsoils, respectively (Fig. 4c and Supplementary
Figs. 18 and 19; Supplementary Table 2). However, as
explained earlier, reaching C saturation is not necessarily feasible
(given climate limitations, for example) or a recommended target.
Rather, the potential lies initially in restoring the natural %C
saturation in managed areas (Supplementary Figs. 18–22; Sup-
plementary Table 1) and, especially, those furthest from %C
saturation (Supplementary Fig. 9; Supplementary Discussion).
We identify geographic locations with the most promise (namely,
temperate and subequatorial zones in the northern hemisphere;
Fig. 4c) and highlight the potential benefit of practices that
sequester C deeper in the soil profile, where soil minerals are
further from %C saturation (Supplementary Figs. 18–20). In
addition to practices that leverage deeper-rooted vegetation41,
recent studies have indicated that new approaches to deep
ploughing55 or other practices resulting in topsoil-subsoil
flipping56 may lead to considerable overall C sequestration,
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MOC/MOCmax. Low %C saturation corresponds to a greater C deficit, and therefore highlights regions where targeted soil management could lead to
higher C sequestration. d Carbon accrual in topsoil (t ha−1 yr−1; mean depth= 29 cm) as a function of %C saturation across sites, based on our global
synthesis of studies that measured C accrual following management interventions (n= 103). Nonlinear fit depicts asymptotic regression model with
shaded areas representing 10th and 90th quantiles.
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although the cost and full impact of such practices on other soil
functions needs to be better understood.

In addition to informing locations for targeted restoration and
carbon sequestration, our data and results are also an essential
input for Earth system models (ESMs) that seek to represent soil
mineral-organic associations explicitly—directly informing the
mineralogical C capacity and constraining the proportion of total
SOC that is mineral-associated (Supplementary Figs. 16 and
17)17. Our global estimate of MOCmax constitutes an effective
potential for sorption on minerals, unlike that derived from
laboratory DOC sorption experiments alone57,58. Laboratory
assays tend to underestimate maximum sorption potential,
especially if they use native soil which already has some carbon
loading on mineral surfaces57,58. Moreover, microbial necromass
and residues contribute substantially to MOC measured in the
field59, and thus, our estimates have the potential to uniquely
improve model parameterizations beyond those obtained from
laboratory measurements.

Carbon sequestration implications and future perspectives.
Geographic regions with higher C deficit can be used to inform soil
C sequestration efforts, such as the “4 per 1000” initiative60,61 and
other nature-based climate solutions62,63. Soils with higher deficit
(Supplementary Fig. 20), and thus lower %C saturation (Fig. 4c,
Supplementary Fig. 18), may provide greater C sequestration effi-
cacy (Supplementary Fig. 9), through C accumulation rates that are
larger and can be sustained for years to decades until a new steady-
state is reached39. We synthesized studies that measured C accrual
rates following management interventions intended to promote C
storage (n= 103, ranging from 2 to 65 years; Supplementary
Figs. 23 and 24) and found that soils furthest from their miner-
alogical capacity (i.e., lowest %C saturation) achieve the highest
rates of C accrual (Fig. 4d). In fact, carbon accrual rates were on
average three times higher in soils from sites with <10% C
saturation compared to sites with 50% C saturation (Fig. 4d). This
result is critical for identifying global regions that, in addition to a
significant capacity for C storage, may also provide greater C
sequestration efficacy (Supplementary Fig. 9; Supplementary Dis-
cussion). Indeed, many of these potential sequestration hotspots
are located in extensive cropping regions (e.g., Midwestern United
States and India; Fig. 4c and Supplementary Figs. 21 and 22) that
could be incentivized to sequester C, with additional co-benefits for
soil productivity and food security64,65.

Estimates of global potential soil C sequestration rates vary
considerably, but recent reviews suggest the annual technical
potential of individual practices (e.g., no-till agriculture and agro-
forestry) applied globally is on the order of 2–5 Pg CO2 yr−1

(0.5–1.4 Pg C yr−1)62,66,67; implementation potentials given
economic considerations fall at the lower end of this range68,
while nutrient limitations may further limit achievable
sequestration69,70. While the implementation of soil management
interventions across the world’s >500 million active farms poses
formidable socioeconomic challenges71,72, actionable valuation of
soil C accumulation may incentivize restorative soil management
in targeted areas73,74, with enduring co-benefits for soil
productivity64,65. Despite the many challenges of such interven-
tions, if the average C accrual rates from our synthesis (Fig. 4d)
were achieved globally over all croplands (Supplementary Fig. 22),
we estimate that soil C sequestration efforts could store over 1 Pg
C yr−1 given current stocks, on par with the bottom-up estimates
of soil C sequestration potential for agricultural lands62,66,67. We
differ, however, in the duration that such carbon uptake rates
could be maintained. Effective C sequestration would push soils
towards higher %C saturation (Fig. 4d), thereby lowering their C
sequestration efficiency over time.

While many soil C sequestration initiatives are centered on
improved management of current croplands60,61 (which often
show more modest C accrual rates and %C saturation;
Supplementary Figs. 20–22 and 23b), the potential for soil C
sequestration is relevant across nature-based climate solutions
more broadly62,63. For example, there are growing efforts in
quantifying the potential for C sequestration on abandoned
pastures and croplands75–79, as well as restoring degraded
rangelands80–84. Though agricultural lands are still expanding
in some parts of the world, nearly 90 million hectares of
agricultural lands were abandoned between 1985-2005 in North
America, Europe, Oceania, and South Asia85 (and up to 472
million hectares have been abandoned globally over the last few
centuries86). Many of these lands are in regions with low %C
saturation, where our synthesis suggests that revegetation and
restoration interventions have the potential to achieve high rates
of C accrual (Fig. 4d; Supplementary Figs. 23–25, Supplementary
Table 4). Finally, we note that given the considerable departure of
most current and abandoned agricultural lands from their
respective mineralogical capacities (Figs. 1, 2, Supplementary
Figs. 20–22) (following losses in soil C content5), incentives that
encourage widespread soil C sequestration efforts are crucial for
scaling and achieving mitigation targets.

Our study provides a spatially explicit global estimate of the
mineralogical capacity of the world’s soils to store carbon and an
improved understanding of the factors—natural and managed—
that drive soils below their capacity. While MOC constitutes the
majority (69%) of total SOC in the top meter of non-permafrost
mineral soils (totaling 899 Pg C), we find that this represents less
than half of the mineralogical carbon-storage capacity. The
understanding of how climate and vegetation affect MOC stocks,
and the pronounced undersaturation in managed lands, in
particular, suggests that there is significant potential for restoring
or enhancing MOC storage. Our estimate of MOCmax can be
refined in future studies as scientists collect more data on
additional mineral types, but already provides a data framework
to inform ESMs, paleo reconstructions of soils, and policies for
soil carbon sequestration. Long-term changes in C inputs may
have lasting effects on MOC that are particularly pertinent for
land management decisions that seek to sequester carbon87.
Other soil modification options—e.g., adding more clay to
existing sandy soils88—to sequester more MOC may also be
plausible, but require substantial research to investigate the gains,
co-benefits, and potential consequences. Our findings shed light
on potential responses and vulnerabilities of MOC to novel
natural or managed conditions and emphasize that it is critical to
consider the whole system when comparing policies and
practices.

Methods
Observational synthesis of mineral-associated carbon. In the present study, we
aimed to quantify the maximum capacity of soils to stabilize mineral-associated
organic carbon as a function of soil mineralogy, and to resolve the underlying
variability due to climate, vegetation, and management. We hypothesized that the
maximum mineralogical capacity (MOCmax) of soils is a function of the amount (%
clay+ silt; CS) and type (high- or low-activity; HM or LM, respectively) of mineral,
while the achieved mineral-associated carbon (MOC) is additionally a function of
climate, vegetation, and management:

MOCmax ¼ f 1 mineral amount;mineral type
� � ð1Þ

MOC ¼ f 2 MOCmax; climate; vegetation;management; ¼
� � ð2Þ

Therefore, we performed an observational synthesis from studies that included
MOC (as measured by size and density fractionation, retaining information about
the size and density cutoffs), independent particulate organic carbon (POC) and
soil organic carbon (SOC) measurements, as well as auxiliary data that included
mean annual temperature (MAT), mean annual precipitation (MAP), clay and silt
(CS), mineral type and soil order, vegetation type and carbon inputs, total, parti-
culate, and mineral-associated nitrogen, and a variety of mineralogical soil
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properties (e.g., cation exchange capacity, iron, and aluminum content, among
others), where available. To locate studies, we searched Google Scholar for com-
binations of the keywords “soil carbon”, “mineral-associated”, “clay”, “silt”, “size
fractionation”, “density fractionation”, and “carbon saturation”. We found that
studies that measured MOC by both size and density fractionation (e.g., refs. 89–91)
were consistent and within the limit of MOCmax for each mineral type, and that
both methods concluded similar ranges of MOC to SOC ratios10 (Supplementary
Fig. 1). These findings support the use of either fractionation method for the goals
of our particular study.

The observational synthesis totalled 1144 mineral soil profiles from 78 studies
that reported fractionation and bulk measurements of carbon and nitrogen across
depths. Specifically, the dataset included: 359 (<2 μm; clay fraction only) and 1451
(<63 μm; clay and silt fraction) MOC measurements, 1107 POC measurements,
and 1432 SOC measurements, as well as corresponding MAT, MAP, CS, soil order,
mineral type, and vegetation type (see section “Defining and evaluating ecosystem
categories” for classification details). We also collected other auxiliary soil
properties, including dithionite- and oxalate-extractable iron (Fed and Feo,
respectively), oxalate-extractable aluminum (Alox), cation exchange capacity
(CEC), specific surface area (SSA), and total reserve bases (TRB), though these
measurements were sparse across the collected studies. A complete list of studies
and their location, climate, and vegetation is provided in Supplementary Table 3.

Studies in our synthesis spanned intensively managed (e.g., crop) to natural/
less-managed (e.g., grassland, forest) ecosystems across diverse climates and soil
types (Fig. 1 and Supplementary Fig. 2). We obtained a representative mix of MOC
measurements from managed (n= 559 profiles) and natural (n= 585 profiles)
lands. We focused on the current management status herein, but note that future
studies may consider information on historical management, where available.
Within natural lands, there was a greater representation of temperate ecosystems,
as opposed to tropical and boreal ecosystems (Supplementary Figs. 2, 3, and 14)—
especially when including the European LUCAS database11,92 (Supplementary
Fig. 2b, d), but our model and results were robust to its exclusion. Furthermore,
measurements in tundra and deserts were limited, highlighting the need for studies
in these regions (Fig. 1c, Supplementary Figs. 2 and 3). Nevertheless, our
observational synthesis spanned diverse climates and soil types: MAT ranged from
−2.9 to 29 °C, MAP from 79 to 3806 mm yr−1, and CS from 1.5 to 100%, across
different mineral and vegetation types (Fig. 1b, c and Supplementary Fig. 2).
Indeed, our synthesis spanned the majority of the climate-edaphic covariate space
encompassed by the world’s soils in WoSIS (World Soil Information Service)93

(Supplementary Fig. 3a, b). We further illustrated the global representativeness of
our synthesis within a multi-dimensional covariate space using a principal
component analysis (PCA) and comparing to randomly sampled WoSIS profiles
(Supplementary Fig. 3c). We note that even WoSIS soil profiles showed a greater
representation in temperate ecosystems compared to tropical and boreal
ecosystems94 (Supplementary Fig. 3b), further highlighting the need for additional
measurements in these regions.

Defining and evaluating ecosystem categories. Here we classified soils into two
broad categories of mineral type and activity; namely, low-activity minerals (LM)
and high-activity minerals (HM). We used soil order from each individual study
and, when provided, details on clay composition to categorize the soil of each site.
Phyllosilicate clay minerals—composed of tetrahedral silicate sheets and octahedral
hydroxide sheets—are composed of either 1:1 (one tetrahedral and one octahedral
sheet) or 2:1 (one octahedral sheet sandwiched between two tetrahedral sheets)
clays. 1:1 clays are prevalent in kaolinitic soils and generally have a lower
SSA14,28,29,95; therefore, such soils generally exhibit a lower capacity to stabilize
carbon and can be characterized as LM. In contrast, 2:1 clays are present in
smectitic (e.g., montmorillonitic) and illitic soils and can be characterized as HM,
on account of their high SSA10,14,28,29. Finally, soils with amorphous, poorly
crystalline minerals and mineraloids (e.g., allophane) also depicted high stabiliza-
tion (described in greater detail below) and were grouped with HM.

Soil orders (USDA taxonomy) represented in this study include Alfisols,
Andisols, Aridisols, Entisols, Gelisols, Inceptisols, Mollisols, Oxisols, Spodosols,
Ultisols, and Vertisols; we excluded organic soils in wetlands and peat, and, thus,
Histosols were not considered. When detailed information on mineral composition
(e.g., the dominant presence of 2:1 vs. 1:1 clays) was not explicitly stated in the
original studies, the following categorization was used based on the primary
mineral composition by soil order31: Oxisols and Ultisols at all depths were LM;
and Alfisols, Aridisols, Gelisols, Inceptisols, Mollisols, Spodosols, and Vertisols
were HM. Andisols and Entisols were HM in the topsoil (0–30 cm) and LM in the
subsoil (30–100 cm). We note that, in future studies, allophanic soils with large
amounts of amorphous minerals (i.e., Andisols) could be treated as a third category
due to their propensity to form stable Al- and Fe-complexes and accumulate
SOC14,32; however, we did not observe a significant difference in their MOC as
compared to HM soils in our synthesis. Furthermore, there are complexities,
including the amount and type of metal oxides and hydroxides, that can make the
distinction between low- and high-activity minerals difficult in certain soils29,96

(and can also complicate the comparison of soil clays and “reference” or synthetic
clays97), the classification of LM and HM soils has been widely used and
supported23,28,29 and emerges from our data globally (Fig. 1 and Supplementary
Figs. 7 and 8). Indeed, the MOC patterns were consistent within our classifications

and, thus, these categories were deemed sufficient for the scope of this global-
scale study.

We retained the classification of vegetation type, and all details on management
practices or lack thereof, reported in the original studies and assigned one of eight
land cover types (Fig. 1b–c). Land cover types included boreal forest, temperate
forest, tropical forest, grassland, savanna, shrubland, and cropland (Supplementary
Fig. 14). To further compare managed and natural lands, we grouped sites into
broad categories of forests, grasslands (including savannas), and croplands. We
observed stark differences between natural or less-managed ecosystems (namely,
forest and grassland) and more intensively managed (crop) ecosystems (Fig. 2). We
calculated the %C saturation of soils (as depicted in Supplementary Fig. 10) to
compare ecosystems and management practices.

Boundary line analyses. To estimate the mineralogical carbon capacity (MOCmax)
as a function of soil mineralogy, we conducted a boundary line analysis across the
full range of clay and silt (CS) for each mineral category (LM and HM, see section
“Defining and evaluating ecosystem categories”; Supplementary Fig. 26). Specifi-
cally, we explored the relationship of MOC (y-axis; g C kg−1 soil) as a function of
CS (x-axis; %) and fit the 95th quantile for natural ecosystems of each mineral type
to obtain maximum boundary-line slopes for HM and LM (Fig. 1; quantile sen-
sitivity analysis in Supplementary Fig. 7). We chose the 95th quantile as a con-
servative approximation of this boundary line, given existing experimental
uncertainty of individual observations (i.e., total % recovery of C from size frac-
tionations ranged from ~80 to 120% among studies). We used MOC observations
from clay and silt (<63 μm) size classes to derive MOCmax (Fig. 1) and note that our
results were robust to the choice of particle size (e.g., <20 μm or <63 μm; Sup-
plementary Fig. 5). The 63 μm silt size threshold chosen is also that used in global
datasets and mapped products of soil clay and silt4,98. We also note that our
estimates of MOCmax for HM and LM were robust across topsoils and subsoils.
Both topsoils and subsoils approached MOCmax (Fig. 2b), and thus, a separate
MOCmax for each depth was not theoretically or empirically warranted. While it is
more difficult to reach MOCmax in subsoils due to lower carbon inputs, MOCmax is
an intrinsic property of the soil mineralogy and constitutes a theoretical upper limit
that is independent of depth; indeed, this depth-independence is important for
capturing MOC stocks and ages in process-based soil carbon models99,100. Our
estimates of MOCmax for HM and LM were also robust across vegetation types
(Supplementary Fig. 8), which corroborates studies showing that microbial pro-
cessing and reactive minerals act as effective filters that lessen chemical differences
in organic matter inputs59,101. Theory and models further support this finding and
suggest that, while litter quality may affect the approach of a given soil to its
mineralogical capacity, the value of MOCmax is independent of vegetation
type28,102. Regressions for both mineral types were fit with a forced intercept
through the origin, since, by definition, no clay- and silt-associated organic carbon
(i.e., MOC) can exist without clay and silt minerals present. While some size
fractionation studies report MOC in sandy soils with very low amounts of clay and
silt minerals92, further exploration is needed to understand the relative contribu-
tion of fine POC and DOC in such soils16.

Statistical modeling and predictive relationships. Due to potential nonlinear
relationships between MOC and environmental variables, we used an ensemble
machine learning method—namely, Random Forest (RF)—to identify key pre-
dictors and their effects on MOC. This method has been shown to reduce over-
fitting to a training dataset compared to other machine learning methods, and does
not suffer from multi-collinearity (i.e., the linear dependence among predictor
variables), as do multiple regression analyses103. We used the RandomForest
package in R for RF analyses103,104. We used an ensemble of 300 independently
trained RF models (using a 75–25% train-test split; 400 decision trees each) with
bootstrapped sampling to robustly assess model performance105—mean absolute
error (MAE) and mean-squared error (MSE) to quantify the model error and R2 to
estimate the proportion of variance in MOC explained by the model (Supple-
mentary Fig. 11). Our aim was to: (i) elucidate key variables by assessing their
relative contribution to the MSE of test-set predictions when removed or permuted,
(ii) calculate the total variance explained by selected predictors, and (iii) predict the
response of MOC to a given variable while controlling for all other variables.

RF is often used to rank the importance of each variable in a regression through
permutations of the data103, as implemented herein. After preliminary
investigation to select the most important variables, while also considering
variables that were measured in sufficient studies to retain the greatest number of
complete observations, we identified CS, MAT, MAP, and POC as key continuous
predictors and vegetation (land cover) and mineral type as key categorical
predictors (Supplementary Fig. 11; R2= 0.60 ± 0.06). Specifically, variables were
ranked from most to least important, where the most important variables showed
the highest increase in MSE of test set predictions when permuted in the model.

We then investigated the underlying relationship of MOC to key variables
(Fig. 3 and Supplementary Fig. 12). RF allowed us to explore the effect of each
individual variable on MOC, by integrating the predicted response over the
contribution of all other variables (i.e., partial dependence plot)106. That is, for a
variable xs and complement set of all other variables xC, the general model function
is f xs; xC

� �
and depends on all input variables. The partial dependence function of

xs, denoted f̂ xs xs
� �

, then describes the marginal effect of xs on the prediction, and is
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estimated as:

f̂ xs xs
� � ¼ 1

n
∑
n

i¼1
f xs; xC

ðiÞ� � ð3Þ

This was calculated for each predictor variable over the full range of the other
predictor variables (Supplementary Fig. 12), and also over relevant subsets of the
other predictor variables to explore conditional partial dependencies and visualize
two-way variable interactions (e.g., Fig. 3). For the case of MAT and POC, we
explored the temperature sensitivity of MOC (i.e., the partial dependence
relationship with MAT) conditional on low (L), medium (M), and high (H) values
of POC that corresponded to different saturation regimes—unsaturated, medium,
and saturated (Fig. 3a). The breakpoints for these three regimes were selected as the
median and third quartile of the POC distribution (namely, 4 and 10 g C kg−1 soil,
respectively), which also correspond to approximate saturation thresholds in the
partial dependence plot of POC (Fig. 3a).

Our approach permits us to disentangle the role of each controlling variable and
two-way interactions on the response variable of interest (here MOC) and uncovers
emergent (linear, monotonic, or nonlinear) relationships, providing unique insights
for MOC response to future climate and management interventions (e.g.,
increasing POC or CS). For comparison, we also repeated the above analysis with a
generalized linear model (GLM) and find qualitatively similar, though linearized,
trends between MOC and the individual environmental predictors.

Global mineral-associated carbon predictions and uncertainty. Following the
exploration of underlying climatic and edaphic properties, we trained a RF model
on our observational synthesis to predict MOC globally. Specifically, we trained the
RF model to predict MOC from MAT, MAP, CS, SOC, vegetation type, and
mineral type (Supplementary Fig. 26). We note that a global map of POC values
did not exist to be used as an explanatory variable, as was used in the attribution
analyses (Supplementary Fig. 11); rather, global POC values can be derived as a
product of this study.

The Scikit-learn Library in the Python environment was used for global
predictions and Matplotlib Basemap for global mapping. We again used an
ensemble of 300 independently trained RF models (using a 75–25% train-test split;
400 decision trees each) with bootstrapped sampling to rigorously assess model
performance105. For these RF models that included SOC, a comparison of
predicted and observed MOC on the independent test datasets across the ensemble
yielded an R2= 0.79 ± 0.05 (mean ± s.d.; Supplementary Fig. 13). We note that,
while the predictability of SOC is often lower across large global datasets4,107, the
predictability of MOC is generally high given readily measured SOC, climate, and
edaphic variables (e.g., see refs. 11,92 on a regional scale). Indeed, the R2 was
consistently high across the ensemble cross-validation (Supplementary Fig. 13b).
We also performed a spatially buffered leave-one-out cross-validation108 to ensure
that spatial auto-correlation did not significantly compromise the RF model.
Namely, for each leave-one-out test data point, all data within a given buffer radius
(0–150 km) were excluded from the training set; i.e., only data points outside the
buffer zone were used to train each RF model. R2 values did not vary with buffer
radius (regression slope not statistically different from zero; p= 0.81) and were in
agreement with the ensemble cross-validation approach (Supplementary Fig. 13c).
Furthermore, we also used a hold-out (or block) cross-validation109 on the basis of
soil order to assess extrapolation performance and confirm the robustness of our
RF estimates across soil types—i.e., all soil profiles from a given soil order were
completely withheld from the training dataset and then used to independently test
the resulting RF model. Model performance was consistently high across the out-
of-sample test datasets (R2= 0.75 ± 0.11; mean ± s.d. across soil orders); only
Andisols (which span ~1% of the ice-free land surface) were more difficult to
predict when completely withheld from the training dataset (R2= 0.40), and we
encourage more measurements in these soils (see section “Defining and evaluating
ecosystem categories”). Hold-out cross-validation on the basis of individual studies
also confirmed the robustness of our RF estimates to additional data (e.g., our
results were insensitive to adding the independent LUCAS dataset92;
Supplementary Fig. 2). We rigorously demonstrate the RF model performance and
provide uncertainty ranges for the 90% prediction intervals, derived from the 5th
and 95th quantiles (Supplementary Fig. 13a).

The climatic and edaphic driver variables used for the global predictions were
all re-gridded to 0.5° × 0.5° resolution (Supplementary Fig. 14). Mean annual
temperature (MAT) was estimated from the CRU data set (version 3.10)110, and
mean annual precipitation (MAP) from the GPCC dataset111, both as 30-year
annual averages. Clay and silt (CS) content was obtained from the Harmonized
World Soil Database (HWSD)98. Soil organic carbon (SOC) was obtained from
both the HWSD and SoilGrids4,98, and also as the average of the two gridded data
products112 (Supplementary Fig. 19 and Supplementary Table 2). Land cover
(vegetation type) was obtained from the MODIS MCD12C1 product113, and the 16
categories were combined into 10 for consistency with those reported in the
observations (Fig. 1b, c and Supplementary Fig. 14 for details). The primary
mineral type was calculated from global estimates of mineral composition31

(Supplementary Fig. 14; see section “Estimating the global soil mineralogical
carbon capacity”). We focused our analysis on mineral soils, and thus excluded grid
cells containing a majority of organic soils (i.e., >50% Histosols and Gelisols)114,115.
Tundra and deserts were also excluded, due to data limitations in these regions

(Supplementary Figs. 2 and 14). We used two depth intervals for SOC, CS, and
primary mineral type, namely topsoil (0–30 cm) and subsoil (30–100 cm).

The predictive RF model (R2= 0.79 ± 0.05; Supplementary Fig. 13), trained on
the observational data, was then used to predict MOC globally for each depth
interval to 1 m (Supplementary Fig. 15; Supplementary Tables 1 and 2 summarize
results for all SOC data products). We include MOC uncertainty ranges for the
90% prediction intervals (5th and 95th quantiles) globally (Supplementary Fig. 15;
Supplementary Table 2). Interestingly, we note that the distributions of MOC and
SOC (and %C saturation) from our globally distributed observational dataset most
closely agreed with SOC and predicted MOC (and %C saturation) from the
averaged data product (Supplementary Figs. 18 and 19; Supplementary Table 2),
whereas the distribution of SOC (and %C saturation) from SoilGrids was higher
and HWSD was substantially lower (Supplementary Fig. 19; Supplementary
Table 2). We focus here on reporting results using the averaged SOC data product,
as a conservative estimate of MOC stocks given the uncertainty and range between
soil carbon data products, and note that more accurate estimates and consensus on
current soil carbon stocks are critical for improved predictions116.

Leveraging our global MOC predictions, we calculated the proportion of SOC
that is mineral-associated globally (Supplementary Fig. 16). Our global estimates of
MOC/SOC ratios agree with those observed in our observational synthesis and
confirm the dominant contribution of MOC to soil carbon at the global scale
(Supplementary Figs. 1 and 16). Furthermore, our predictions suggest that high-
latitudes have a lower fraction of MOC/SOC globally, and thus a higher fraction of
particulate organic carbon (POC), but data limitations of mineral-associated
carbon measurements at high-latitudes warrant further exploration of these
patterns.

Estimating the global soil mineralogical carbon capacity. To estimate the
spatially explicit mineralogical carbon capacity (MOCmax) globally, we used global
data products of clay and silt content (CS), soil order and mineral composition, and
bulk density (BD), together with our derived relationship for MOCmax (Eq. 1;
Fig. 1). Global maps of % clay, % silt, and BD were obtained from the HWSD98. A
map of soil mineral composition31 was used to generate a corresponding map of
primary mineral type (Supplementary Fig. 14; see section “Defining and evaluating
ecosystem categories”). Our focus here was on mineral soils, and thus, we excluded
organic soils (grid cells with >50% Histosols and Gelisols) from the estimation of
global MOC storage potential. Tundra and deserts were also excluded due to data
limitations (Supplementary Figs. 2 and 14). We calculated CS content and applied
our MOCmax relationship (Fig. 1; slope ± 90% confidence intervals) for each
mineral type (HM and LM) globally to obtain MOCmax (gC kg−1 soil) at 0.5° × 0.5°
resolution. For a global total (in Pg C; 1 Pg= 1015 g), we used BD to calculate
MOCmax stocks (in kg C m−2 soil) and then summed over all grid cells containing
mineral soils (Supplementary Tables 1, 2).

The mineralogical capacity MOCmax (Supplementary Fig. 17) was then
compared to predicted MOC stocks (Supplementary Fig. 15) to calculate the
mineralogical C deficit (by subtracting MOC from MOCmax) and %C saturation
(by dividing MOC/MOCmax) globally (Fig. 4; Supplementary Figs. 18–20). We note
that this limit is based on mineralogy alone, and many lands may be further limited
by climate. Thus, in addition to the C deficit relative to the mineralogical capacity
(MOCmax), we also estimated the C deficit relative to an environmental limit
calculated using the natural land average %C saturation (i.e., average MOC/
MOCmax) observed in our MOC synthesis at each depth (Fig. 2; i.e., 51 and 19% for
topsoil and subsoil, respectively). These results are summarized in Supplementary
Table 1. We note that our estimates of C deficit and %C saturation using SoilGrids
are the most conservative for potential accrual, given their higher current SOC (and
consequently MOC) stocks (Supplementary Table 2). However, our estimates using
the averaged soil carbon data product agree with the distributions of MOC stocks
and %C saturation in our observational synthesis (Supplementary Fig. 19;
Supplementary Table 2), and provide a robust estimate that incorporates the range
of current soil carbon stocks.

Our spatially explicit, depth-resolved global estimates highlight regions where
larger C deficits (lower %C saturation) can be targeted for soil restoration and C
sequestration efforts, especially on managed lands (Fig. 4c; Supplementary Figs. 21
and 22). While environmental conditions may make carbon accumulation more
difficult in some regions than in others (Supplementary Fig. 12), this estimate
constrains MOCmax for a given soil mineralogy and provides a starting point for
areas to focus on management (Supplementary Discussion). Furthermore, while
deep soils have the largest C deficit, surface soils in lands already dominated by
management may be the most cost-effective areas on which to focus.

Observational synthesis and analysis of carbon accrual. Here we aimed to
quantify the ability of topsoils ranging in mineralogical carbon saturation to further
accrue carbon. We hypothesized that soils further from their mineralogical capacity
(i.e., lower MOC saturation) would accrue carbon faster than soils closer to their
capacity. To this end, we performed an observational synthesis from manipulation
and chronosequence studies that included initial and final carbon stocks or con-
centrations to calculate these stocks, bulk density, experimental duration, and
edaphic properties; namely, clay and silt content, texture class or soil series to
estimate these contents and soil classification or other information that would
allow us to assign the soil to a high- or low-activity mineral type.
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For each entry (a pair of initial and final carbon stocks), we calculated the
maximum mineralogical capacity (MOCmax) using the data-derived relationships
(Fig. 1) with an amount (% clay+ silt; CS) and type (high- or low-activity; HM or
LM, respectively) of mineral in each soil layer and used respective bulk densities to
calculate the layer MOCmax stocks (t C ha−1) which were then summed across the
considered depth to obtain the profile MOCmax stock (t C ha−1). In cases where
initial and final soil profiles differed in clay and silt content, their average was used.
However, if the difference resulted in these soil profiles falling into different texture
classes, they were excluded from further analysis. Furthermore, to calculate initial
and final stocks, we considered initial and final profiles that were taken at equal
depths, which ranged between 10 and 40 cm across studies. Where necessary, initial
and final SOC stocks were standardized to equal depths using the maximum depth
of the shallower profile as a cutoff ranging between 30 and 39 cm (n= 5 profiles).

We calculated the mineralogical %C saturation as the initial MOC stock divided
by the initial MOCmax stock. Because MOC was not measured in all accrual studies,
we used the measured SOC and CS values to calculate the corresponding MOC
using our random forest model trained on the MOC synthesis data with analogous
SOC and CS predictors (R2= 0.70 ± 0.06; using Scikit-Learn in Python, see section
“Global mineral-associated carbon predictions and uncertainty”).

Carbon accrual (t C ha−1 y−1) was calculated as the difference between final and
initial C stock divided by the time period between the repeated samplings (n= 32),
the duration of the experiment in the case of a paired plot experimental design
(n= 30), the age difference between two sites of a chronosequence (n= 24), the
time span at which a regression across multiple samplings was used to obtain an
average rate for a chronosequence (n= 10), or the time of soil formation after
emergence of a SOC-free parent material (n= 7).

Accrual studies spanned crop, pasture, grassland, and forest ecosystems across
different climates and soil types (Supplementary Table 4; Supplementary Fig. 23).
We focused on studies in which carbon inputs were manipulated or land-use was
altered in a way that carbon accrual could be expected. These included improved
agriculture (cover cropping, no till, crop-livestock rotation, deep ploughing, grazing
reduction), land use change (conversion of cropland to grassland or forest),
doubled litter or wood input from the DIRT (Detrital Input and Removal
Experiment) network, and natural revegetation and mine reclamation (formerly
degraded lands or newly exposed land surfaces as a result of mining, landsliding,
alluviation, or marine terrace uplift, where soil C accrual can be expected as a
consequence of natural or human-accelerated revegetation and soil formation). We
note that most studies did not explicitly quantify C inputs over time, especially
those where changes in C inputs stemmed from downstream impacts on
vegetation, and we strongly urge the reporting of C input estimates in future
studies. After the initial compilation, profiles were excluded in which the studied
soil depth was lower than 15 cm (n= 2) and in which organic amendments were
applied annually, in an initial one-time application higher than 20 t ha−1 without a
control plot or at unknown intensity (n= 11).

Our accrual synthesis included 103 observations from 34 studies, with depths
ranging between 15 and 40 cm (mean = 29 cm). The synthesis included soils with
both high-activity minerals (n= 84), especially Entisols (n= 41) and Alfisols
(n= 20), and low-activity minerals (n= 19), belonging to Oxisols (n= 10) and
Ultisols (n= 9). There was a greater representation of temperate climates,
highlighting the need for additional studies in poorly represented regions including
tropical and boreal climates in future work. However, globally, our study suggests
that the greatest potential for accrual (i.e., lowest %C saturation) often occurs in
these temperate regions (Fig. 4b) and was thus a focus of our work.

While most soils in the C accrual synthesis fell below 100% C saturation, we
note that MOCmax was derived as a conservative estimate from the 95th quantile of
our MOC synthesis (Fig. 1; see section “Boundary line analyses”) and therefore, by
definition, soils can fall near or above this maximum. Indeed, in our MOC
synthesis, ~200% C saturation values were observed for soils with low values of
MOC and MOCmax. Of the 103 accrual measurements, one sandy soil (i.e., low
MOC and MOCmax) displayed seemingly high %C saturation, yet still within
expected ranges (Fig. 4d). Furthermore, this soil was categorized as an Andisol,
which could be treated as a third category in future studies (see section “Defining
and evaluating ecosystem categories”), due to its propensity to form stable Al- and
Fe-complexes and accumulate carbon14. Nevertheless, removing this individual
measurement, or even all Andisols (n= 6) in the C accrual synthesis, did not
change the fitted model.

Furthermore, we note that the reclaimed mine soils in our dataset constituted
two major categories of abandonment and regeneration—those with and without
topsoil application (Supplementary Fig. 23b). Mine reclamation that employs the
application of topsoil (usually a 30 cm layer, originally excavated before mining and
stored in stockpiles; n= 31) is, in terms of management procedures, comparable to
the conversion of cropland (disturbed by tillage and/or erosion) to grassland or
forest. Reclamation can involve some mechanical preparation of soil, application of
fertilizer or other organic amendments, and planting vegetation. This reapplied
topsoil is sampled as a baseline and subsequent sampling in the following years is
used to monitor C accrual. In reclamation without topsoil application (n= 13),
vegetation either spontaneously establishes itself or is planted directly into the
parent material. Such conditions represent early stages of soil formation and are
parallel to the restoration of soils heavily impacted by erosion that has led to the
complete loss of topsoil with only the infertile parent material left behind. While
mine soils are well-described systems suitable for the study of soil management,

included in previous syntheses of soil carbon dynamics after land-use
change117,118, the fitted model and observed negative trend in C accrual with %C
saturation were robust to their exclusion (Supplementary Fig. 23c).

Statistical analyses were conducted using the ‘nls’ package in R to fit a nonlinear
asymptotic relationship between carbon accrual rates and the mineralogical percent
saturation of the respective soil profiles. Specifically, we used a three-parameter
self-starting asymptotic regression model (SSAsymp) on the 103 rate
measurements (R2= 0.18; Fig. 4d). The same approach was also used to fit the
10th and 90th quantiles (Fig. 4d). There was substantial variability in observed
accrual rates for a given %C saturation, due to differences in climate and land use
across sites (Supplementary Fig. 23). However, most of this variability appeared in
soils furthest from C saturation, where environmental and management factors
also play a role in observed accrual rates. In soils closest to saturation, this
variability was far lower as carbon accrual rates tended towards zero, illustrating
the importance of the mineralogical limit. Our focus here was on constraining an
average empirical rate of carbon accrual as a function of %C saturation and
investigating whether soils furthest from C saturation achieve higher carbon
accrual rates. We also note that the variability in C accrual rates was better
explained by %C saturation (R2= 0.18) than by initial SOC (R2= 0.04-0.10;
Supplementary Fig. 24), further demonstrating the relevance of the
mineralogical limit.

We used the nonlinear asymptotic regression to provide a spatially explicit
global estimate of potential C accrual rates in topsoils dominated by management
(Supplementary Fig. 22). While such accrual rates would be difficult to achieve
everywhere, our spatially explicit estimates of potential C accrual rates highlight
priority regions for future soil restoration and C sequestration initiatives and
provide an independent estimate of global soil C sequestration potential.

Data availability
The globally gridded maps of mineral-associated carbon and mineralogical carbon
capacity derived in this study are freely available and archived at Zenodo (https://doi.org/
10.5281/zenodo.6539765). The observational syntheses (mineral-associated carbon and
accrual measurements) in support of these findings are detailed in Supplementary
Tables 3 and 4, and archived at Zenodo (https://doi.org/10.5281/zenodo.5987415).

Code availability
All code relating to this study is available from the corresponding author upon request,
and is archived at Zenodo (https://doi.org/10.5281/zenodo.6539765).
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